Запись

[python school] MLOps: Разработка и внедрение ML-решений (Дмитрий Ермилов)

Тема в разделе "Курсы по программированию"

Цена:
54000 руб
Взнос:
744 руб
Организатор:
Евражкa

Список участников складчины:

1. Евражкa
open
2
Записаться
  1. Евражкa Организатор складчин

    [python school] MLOps: Разработка и внедрение ML-решений (Дмитрий Ермилов)

    [​IMG]


    Подходы к разработке ML-решений + средства их реализации и внедрения в production. Вы пройдете все шаги создания ML-продукта от сбора данных до интеграции ML-модели в эксплуатацию. Познакомитесь с популярными инструментами командной разработки: Git, MLFlow, DVC. Узнаете главные архитектуры ML-решений и основы менеджмента DS-проектов*.

    Что такое MLOps
    Благодаря стремительному развитию машинного обучения, MLOps-инженеры сегодня — одни из самых востребованных и высокооплачиваемых специалистов в области Data Science.

    MLOps – это культура и набор практик комплексного и автоматизированного управления жизненным циклом систем машинного обучения, объединяющие их разработку (Development) и операции эксплуатационного сопровождения (Operations), в т.ч. интеграцию, тестирование, выпуск, развертывание и управление инфраструктурой.

    MLOps расширяет методологию CRISP-DM с помощью Agile-подхода и технических инструментов автоматизированного выполнения операций с данными, ML-моделями, кодом и окружением. К таким средствам относятся рассматриваемые в нашем курсе Git, MlFlow, DVC. MLOps позволит избежать распространенных ошибок и проблем, с которыми сталкиваются Data Scientist’ы, работающие по классическим фазам CRISP-DM. Организационные приемы MLOps должны быть независимыми от языка, фреймворка, платформы и инфраструктуры.

    MLOps поможет улучшить следующие аспекты ML-проектов:

    • унифицировать цикл выпуска моделей машинного обучения и созданных на их основе программных продуктов;
    • автоматизировать тестирование артефактов Скрытый текст. Доступен только зарегистрированным пользователям.Нажмите, чтобы раскрыть... , таких как проверка данных, тестирование самой ML-модели и ее интеграции в production-решение;
    • внедрить гибкие принципы в проекты машинного обучения; поддерживать модели машинного обучения и наборы данных для их в системах CI/CD/CT;
    • сократить технический долг по ML-моделям.


    Программа курса "MLOps: Разработка и внедрение ML-решений"
    Часть 1. Задачи и инструменты машинного обучения
    Цель:


      • дать представление о постановках задач машинного обучения, а также современных методах и инструментах их решения;
      • продемонстрировать отличия от задач, для решения которых достаточно классических методов и алгоритмов (без ML)
    Теоретическая часть: погружаемся в классические постановки задач машинного обучения, методы их решения, метрики качества для оценки точности результатов, знакомимся с инструментами
    Практическая часть: осваиваем инструментарий и настраиваем среды разработки, решаем небольшой набор ознакомительных задач
    Домашняя работа: решение задачи классификации/регрессии.

    Часть 2. Основные этапы разработки ML-решений: от прототипа до подготовки к production
    Цель:


      • продемонстрировать подходы к прототипированию и основные требования, которым должен удовлетворять прототип;
      • показать этапы доработки прототипа при подготовке MVP;
      • дать представление о возможных подходах к интеграции решения в продуктивной среде;
    Теоретическая часть: демонстрация процесса разработки ML-решения, от сбора данных до сериализации ML-модели.
    Практическая часть: пример построения сквозного ML-решения.
    Домашняя работа: построение индивидуального сквозного ML-решения.

    Часть 3. MLOps. Экосистема разработки ML-продуктов
    Цель:


      • продемонстрировать необходимость инструментов командной разработки ML-решений;
      • показать этапы доработки прототипа при подготовке MVP;
      • дать представление о возможных подходах к интеграции решения в production;
    Теоретическая часть: демонстрация примеров необходимости внедрения MLOps- инструментов.
    Практическая часть: используем Git, MLFlow и dvc в сквозном примере.
    Домашняя работа: используем Git, MLFlow и dvc в индивидуальном сквозном ML-решении

    Часть 4. Подходы к работе с данными на каждом этапе разработки ML-решений
    Цель:


      • показать основные типы данных и методы работы с ними;
      • продемонстрировать подходы к поиску, хранению и обработке данных на этапах разработки ML-решений;
      • основные вопросы разметки данных и их подготовки для обучения и использования в production
    Теоретическая часть: знакомимся с данными в виде таблиц, текста, картинок, аудио. Отвечаем на вопросы как и чем обрабатывать и производить разметку в каждом отдельном случае. Погружаемся в мир Скрытый текст. Доступен только зарегистрированным пользователям.Нажмите, чтобы раскрыть... , PostgreSQL, Apache Spark, Hive для обработки и хранения данных. Смотрим на AirFlow как на инструмент для планирования и выполнения задач по обработке данных.
    Практическая часть: продолжаем развитие сквозного ML-решения, увеличиваем объем данных, переезжаем в БД, размечаем данные, настраиваем AirFlow на процесс получения и подготовки данных для обучения.
    Домашняя работа: развиваем индивидуальное сквозное ML-решение.

    Часть 5. Обзор архитектурных решений для интеграции в production. Использование облачных сервисов
    Цель:


      • показать основные подходы по интеграции решений в production: монолит или микросервисы, высоконагруженные системы, локальный сервер или облачная платформа;
      • продемонстрировать плюсы и минусы использования облачных сервисов на каждом этапе разработки ML-решений;
      • погрузиться в особенности микросервисных архитектур c использованием контейнеризации;
      • проработать вопрос использования коробочных решений на примере TF serving;
      • интегрировать решение на облачную платформу Yandex Cloud.
    Теоретическая часть: знакомимся с интеграцией в production. Рассмотрим различные варианты архитектур ML-решений. Рассматриваем микросервисную архитектуры с использованием контейнеризации (Docker и K8s). Интеграция с Yandex Cloud.
    Практическая часть: упаковываем сквозное ML-решение в контейнер и отправляем в AWS, обновляем текущее решение с добавлением TF serving.
    Домашняя работа: развиваем индивидуальное сквозное ML-решение.

    Часть 6. Обзор этапов и структуры ML-проекта* (входит в расширенную версию курса — 40 ак.часов)
    Цель:


      • показать весь ML-проект целиком: основные этапы и ресурсы, необходимые для реализации проекта;
      • продемонстрировать цикличность в жизненном цикле ML-решения;
      • отметить важность мониторинга и дэшбордов для поддержки и развития ML-решений.
    Теоретическая часть: подвести итоги и взглянуть на ML-проект в целом: основные составляющие успешного проекта, количество и состав команды на каждом этапе разработки ML-решения, технологии и инструменты для разработки ML-решения и управления ML-проектом. Менеджмент DS-команды.
    Практическая часть: настраиваем DVC и MLFlow, создаем репозиторий в Git, разворачиваем CI/CD для сквозного ML-решения.
    Домашняя работа: завершаем индивидуальный проект.

    Скрытый текст. Доступен только зарегистрированным пользователям.Нажмите, чтобы раскрыть...
     
  2. Похожие складчины
    Загрузка...
Наверх